multi-messenger astronomy

The source of high-energy 'cosmic neutrinos' has eluded scientists for decades, that was until last September when such a particle struck a detector buried in ice at the South-Pole, research published in Science reveals. The event was coupled with the detection of a flaring 'blazar' by NASA's Fermi Gamma-Ray Telescope giving us a clue as to the origin of high-energy neutrinos. This discovery is not just significant for our knowledge of these particles however, it may help usher in a whole new age of astronomy.
Science & Technology

Researchers find source of cosmic neutrinos ushering in a new era of ‘multi-messenger’ astronomy

The source of high-energy ‘cosmic neutrinos’ has eluded scientists for decades, that was until last September when such a particle struck a detector buried in ice at the South-Pole, research published in Science reveals. The event was coupled with the detection of a flaring ‘blazar’ by NASA’s Fermi Gamma-Ray Telescope giving us a clue as to the origin of high-energy neutrinos. This discovery is not just significant for our knowledge of these particles however, it may help usher in a whole new age of astronomy.